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ABSTRACT 

The concepts of geometric optics as applied to a spherical reflector 
are discussed in detail. The caustic surface of a spherical reflec- 
tor is examined, with particular emphasis on the advantages of 
complex number notation, and representation in terms of the height 
of the incoming ray and the arc length along the caustic. The focal 
region within the caustic curves is studied, and the importance of 
the circle of least confusion is pointed out. The use of wavefront 
constructions as an alternate approach is illustrated. The func- 
tional relationships are developed for the path-length to a field 
point on a concentric surface in the focal region, its spherical co- 
ordinates, and the height of incoming rays. Computations are sum- 
marized on graphs. Finally, the relationship between stationary 
phase and path-length is mentioned. 
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SUMMARY 

This report covers the application of geometric optics to the problem of the 
transverse antenna feed for a spherical reflector being studied under contract 
AF 19(628)2758, "Transverse Antenna Feeds".   It begius with an introduction to 
the geometric optics of a spherical reflector, covering the justification of study- 
ing rays only in a single plane, and a review Df the classical aberrations.   This 
is followed by a detailed treatment of the caustic surface.   The historical and 
mathematical background of the caustic is briefly reviewed.   Photographs of 
caustics are shown.   The derivation of the caustic and its properties in terms 
of complex numb« rs is studied, including formulas for points on a caustic, arc 
length (which is related to phase along the caustic), radius of curvature and the 
evolutes of the caustic.   The displacement h, of an incoming ray from the center 
of the sphere turns out to be useful as a variable.   The representation of some 
of the important quantities in terms of h, and in terms of s, the distance along 
the caustic is then developed, and in some cases graphed.   Because all reflected 
rays pass througi it and because of its small size, the circle of least confusion 
is studied as a potential feed surface for the spherical reflector, using both 
graphical and analytical methods.   The approach to the problem of the spherical 
reflector through wavefront analysis is discussed.   This method to demonstrated 
by construction of three sets of wavefronts near the caustic and by construction 
of wavefronts by transmission from the sphere.   Pathlength to field points in the 
focal region is then studied.   L, the pathlength to, and Op, the angular location 
of a field point are computed and graphed against h as Independent variable and 
against each othor, with rp, the radius vector to the field point as a varying 
parameter.   Tht derivatives dL/dh and dö/dh are also plotted.   These curves 
are reviewed, bringing out in particular the existence of up to three rays at any 
field point and t1ie variation of path-length within the caustic surface.    Last, the 
relationship of path-length to future work using the method of stationary p)hase 
is pointed out. 
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1.0    INTRODUCTION 

This report is Part I of a study for Af CRL on Conlxact AF19(628)2758 "Transverse 
Antenna Feeds".   The purpose of the study is first, to evaluate the electromagnetic 
field in the focal region of a spherical reflector and second, to design a transverse 
antenna feed array that will correct for the inherent spherical aberration of the 
sphere and provide limited beam scanning at microwave frequencies. 

Part I considers those geometric concepts which will be used in the solution, 
namely, ray tracing, optical path lengths» description of the focal region, 
inforTintion on the circle of least confusion, and elementary Huygens' wave theory. 
Part n will consider the polarization of the induced surface currents and of the 
reflected waves required to evaluate the strong cross polarization components of 
the field.   A later report will deal with the evaluation of the focal region by the 
method of stationary phase.   Theoretical results Mil be checked by experimental 
measurements in the focal regions of a circular pillbox reflector and a spherical 
reflector. 

Electromagnetic field problems as complex as this one have always resisted efforts 
at rigorous solution.   Invariably, simplifying assumptions or approximations must 
be made in order to obtain realistic answers. 1.2  in this respect simplification is 
realized and significant results obtained using geometric optics, where the 
important assumption is that wavelength is small, i.e. X—»-0.   Geometric optics 
leads to the concept of propagation along rays and thence to the use of ray tracing 
and gfjometry as the principal analytical tools.   Application of these tools leads 
to the study of image formation, of focussing and of aberrations.   And it is here, 
in the study of the focussing properties of the spherical reflector, for a point object 
or target at a great distance, that we have concentrated our efforts.   This report 
discusses in detail the results of these efforts. 

Geometric optics has its limitations.   It does not account for polarization effects, 
or diffraction.   Some aspects of these are treated in later parts of this study, as 
indicated earlier.   The insight gained from geometric optics into the focal region, 
in particular, the existence of up to three rays at any point in the focal region, 
and the path length calculations, has given direction to the effort in the later 
phases, especially the stationary phase evaluation, which is strongly related 
qualitatively to this earlier work. 
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2.0    REVIEW 

The sphere is the simplest of all three-dimensional surfaces because its radius 
of curvature is constant.   Consequently, it has no preferential direction and 
every radius (or normal) passes through its center and is aji axis of symmetry. 
Also, every plane section through the center is a great circle.   These properties 
will now be applied to the optics. 

Consider a parallel pencil of rays incident on the conca'e side of a spherical cap 
as in Figure 1.   The optics is simplified if the incident ray through the center O 
of the sphere, the central ray, is chosen as the axis.   The law of reflection states, 
(a) that the refit^ted ray lies in the plane of incidence (the plane containing the 
normal to the surface, OB and the incident ray AB), and (b) that the angle of 
reflection equals the angle of incidence.   The plane of incidence therefore contains 
the center, which lies en the normal, as well as the axis, and intersects the sphere 
in a great circle.   It follows that (a) all problems ot reflection of a single ray reduce 
to that of reflection from a circle; and (b) all reflected rays intersect the axis. 
There can therefore be no skew rays (rays that miss the axis), as there are in the 
uff-axis ilkimination of the paraboloid.   It further follows that all incoming linearly 
polarized waves are treated alike. 

Incoming rays, parallel to and very near the ray passing through the center of the 
sphere, pass through a focus F called the paraxial focus located half-way down the 

SPHERICAL 

INCIDENT  RAY 

CENTRAL   RAY 

REFLECTED RAY 

Figure 1.   Spherical Cap and Incident and Reflected Ray 



central ray from the center of curvature to the spherical reflector.  In general, 
for any doubly curved reflector all reflected rays are tangent to two caustic surfaces. 
A caustic is defined as the envelope of reflected (or refracted) rays as the position 
of the point of incidence is varied.   It is a region of high energy density.  All rays 
incident on the reflector the sa-ne distance from the central ray, upon reflection 
intersect at the same point on this ray.   This point moves from tl» paraxial focus 
toward the vertex as the incident rays go from the central ray outwards, thus forming 
a line, the axial caustic, which is a degenerate caustic surface.   All reflected rays 
intersect this line. 

Cotisider now a typical ray AB incident on the spherical reflector at B (see Figure 
1).   It is parallel to the central ray and separated from it by a distance h.   Let 
the center of the sphere (center of curvature of the reflector) be O, the point of 
incidence of the central ray on the reflector be V, and the co-ordinate system have 
its origin at Oand axes as shown.   Then h is the length IÖAI, where A is the foot 
of the perpendicular from O.   Let the angle between the incident ray and the normal, 
4 ABO, be a.   Then by the laws of reflection noted earlier the angle of reflection 
A- OBFj is also a, and further, the reflected ray, the normal and the incident ray 

all lie in the same plane, i.e., points O, B, A lie in the plane of incidence.   But 
AB is parallel to OV, therefore the plane contains the central ray, and further, the 
co-ordinate angle 6 of the point B equals a.  Thus the reflected ray must intersect 
OV, say at F,.   In terms of our co-ordinate system, since the z axis lies along the 
central ray, OA lie^t in the y-y plane, at angle (f> with respect to the x-axis, and the 
plane of incidence is cliaraciei ized by the angles ^ and </)-ir.   The other two 
important parameters are h and Ö (or a). 

There is no loss in generality if we let 0 = 0, as In Figure 2.   Here again 0 = a-, 
and the reflected ray makes an angle 2« with the central ray.   Since triangle OF-B 
is isosceles, 1 

INCIDENT 
RAY 

CENTRAL 
RAY 

REFLECTED RAY 

REFLECTOR 

Figure 2.   Geometry of Circular Section 



but 

OF- = OM seca 

OM = R/2 = f 

Hence 

OF1 = f + Az = f seco (1) 

For a = 0, OF = f = R/2, i.e., in the limit of rays near the central ray, OFi 
approaches R/2.  These rays are termed paraxial rays and F is termed the "paraxlal 
focus". 

The shift in the intercept witli the central ray from F to Fj is 

Az = Fj - F = f (seca -1) (2) 

and is termed the 'longitudinal spherical aberration. "3 This and other useful 
information on path-lengths, phase errors, etc. are discussed by Spencer, Sletten 
and Walsh4, who studied the phase along the axis of the gphere.   This study was 
later incorporated in the design of the 1000 foot diameter spherical reflector with 
corrected line source feed at Arecibo, Puerto Rico. 
« 

Since the incoming rays are incident at an angle to the normal, their images suffer 
from the usual astigmatism.   Thus, a narrow bundle of rays close to AB but in the 
plane of Figure 2 will focue at C, a point on the circle BCM of diameter f.   The 
"tangential" focal length is: 

BC = BM cosa = f cosa (3) 

On the other hand, the fan of rays perpendicular to the plane of the figure intersects 
at Fi on the axis.   Thus tlie "sagittal" focal length is given by: 

B F. = f seca (4) 

Its magnitude equals that for OFi, Eq. (1),   The difference CFi between the 
sagittal and tangentijil focal lengths is the astigmatism of the reflector element at 
6.   Note that the geometric mean of the two focal lengths is simply f. 
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3.0    THE  CAUSTIC SURFACE 

3.1    Generation of the Caustic Surface 

The locus of C in Figure 2 is an epicycloid termed the "Nephroid' .   Kinematically, 
it can be generated by a point C en a sphere of diameter BM = f = R/2, rolling about 
a sphere of radius OM = f = R/2.   When the curve C is revolved about the axis OV 
we obtain a caustic surface which is a surface of revolution.   Historical background 
and collections of pertinent formulas are to be found in the Encyclopedia Brittanica*^, 
Yates^ and Zwikker7.   Interestingly, much of the mathematics associated with the 
reflection of rays (and waves) from spheres was known by Huygens in 1679, almost 
300 years ago, when he introduced the concept of what is now known <is "Huygens' 
Wavelets".   A wave treatment of the region between the caustics is described briefly 
in Section 4 of this report. 

Traces of caustic surfaces formed by reilection or refraction can be observed in 
everyday life.   Figure 3 shows a reflected caustic in a bowl partially filled with 
milk.   The cusp is clearly observed.   Figure 4 shows caustics formed by a plastic 
cylinder filled with water.   The caustic by reflection was formed by light that en- 
tered through the top surface .   The caustic by refraction was formed by light en- 
tering the right side of the cylinder and emerging on the left. 

Let us now consider a family of parallel rays, i.e., a bundle of rays, traced through 
reflection from a spherical reflector.   A plane section is shown in Figure 5.   It is 
evident that the reflected rays fold into a sort of a fan whose envelope is densely 
populated by rays.   This is the caustic curve.   It is formed by the crossing of ad- 
jacent rays in a plane. 

Figure :>.   Photograph of Caustic in ;i iVml ol Milk 



CAUSTIC  BY 
REFLECTION 

DIRECTION  OF 
INCIDENT LIGHT 

Figure 4.   Photograph of Caustics by Reflection and Refraction 

3.2    Use of Complex Number Notation 

3.2.!    Reflected Rays 

Reflection of rays from surfaces can be handled by vector analysis or by the dif- 
ferential equations of envelopes.   In our case it is simpler to carry out the analysis 
by use of complex number representation^ in the plane of incidence.   Consider in 
Figure 6 a sphere of unit radius (R = 1,0).   The unit vector, eto, indicates the nor- 
malized position vector OB for a point on the sphere.   A position vector OQ con- 
necting the center of the sphere to a point on the reflected ray is then represented 
by 

T = ÖQ  =  OB  +  BQ 

i.e. 

r =   9     - p e (5) 

where p is the scalar distance BQ along the reflected ray. 

When p intersects the axis, Q is ccincident with Fi and the imaginary part of Equa- 
tion (5) is zero. 

O = sin a - p sin 2a 

On dividing by sin a and transposing, 

1 
p ■•- T, sec a 

This is the value of BFi which checks with Equation (4). 

(6) 
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COMPLEX NUMBER NOTATION 

- ««a .-A2ia r =e,a-pe 

BC = f cos a = - 
2 

ds    3 — = 3 sin a 
da   2 

OA=sina = h 

AB=cos a 

OF=f = ^ 

OF-—sec a 

= — cos a 

Figure 6.   Geometry of Reflection (Complex Number Notation) 

3.2.2    Point on Caustic 

A caustic is by definition the envelope of reflected (or refracted) rays, as the posi- 
tion of the point of incidence is varied. Differentiation of Equation (5) with respäct 
to a yields 

dr 
da 

ia 
=  i e 

2ia 

0 .     2ia       2ia dp - ..' ip e       - e       -£ da 

i (cos a - 2p) + sin & - ■£■ 

imaginary real 

(7) 

For Q to coincide with C, a point on the caustic, dr/da must be parallel to e*lCl so 
that the imaginary part within the square brackets of Equation (7) is zero.   Thus 

p = — cos a = f cos a (8) 

which checks with Equation (3). 
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The real part in the brackets of Equation (7) is ds/da, the rate of variation of s, 
the arc length of the caustic.   To evaluate this, one differentiates Equation (8) to 
obtain 

(i£--±sma (9) 

which is then substituted into the real part of Equation (7).   The result is 

ds c        3    .   ^ .-n. 
dS=    d^T   =-2sma <10> 

An alternate expression for a point C on the caustic arises from the fact that C is 
on the circle of diameter MB (see Figure 7), We may then represent its position 
vector by 

OC   =   r   --- OB' + B'C c 

—       3   ia     l    3ia 
c       4 4 

(Ha) 

TYP real and imaginär/ portions of this yield the classical coordinates of the caustic 
with respect to the origin O.   If 

then 

OC  =  z    + i x (lib) 

4z    =  3 cos a - cos 3 a c 

4x    =   3 sin a - sin 3a c 

These equations can be transformed to 

a   1 + 2 sin  a 2z    = cos a |1 + 2 sin   a | (12a) 

3 
x    =  sin   a (12b) 

Differentiation of Equation (11a) yields 

drc 

da 
_   . 3 f  ia       3ia] =  i^e     -e      J 
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rc  -4e   -4« 

4zc= 3 cos a -cos 3a 

4xc
s3 sin a -sin 3a 

s   = "I-(I-cos a) 

I    ds     3 
r      2   da    4 

4vCT c    2 

xc = h3 

4rc
2=l+3h2 

[l + 2h2] 

y AXIS IS OUT OF PAPER 

Figure 7.   Geometry of Reflection (Alternate Representation) 

Whence 

^c      3   2ia   . 
To  := 2e     sma 

But dr" /dot can also be expiossed as 
c 

(13) 

dr" 
c 2ia ds 

da. da 

By comparison of Equations (13) and (14): 

|=|-sin« 

which checks with Equation (10). 

(14) 

(15) 
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MIRROR 

RADIUS OF 
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EVOLUTE 

-EVOLUTE OF EVOLUTE 

Figure 8.   Evolutes of the Caustic 

3.2.5   Evolute of Caustic 

The evolute of any curve is the locus of centers of curvature.   It has the property 
that, if a string is unwrapped from the evolute, a point,on the sfring will generate 
the curve, or a parallel curve, depending on the initial length of the string.   It is 
known that the evolute of any epicycloid1" is a similar epicycloid but rotated so 
that its cusps lie midway between those of the epicycloid.  In particular, the evo- 
lute of the caustic of «he sphere (for the source point at infinity) is a similar epi- 
cycloid but to half the scale, and rotated 90°.   This is shown in Figure 8.   Shown 
also is the evolute of the evolute of the caustic.   This is concentric with, and simi- 
lar to, the caustic but to one fourth its scale. 

3.2.6   Mticaustic 

If a string is tied to a point source and then stretched around a pencil at point B on 
the reflector Figure 9, and thence to a tangent point C on the caustic and along the 
arc to F, the pencil will trace the outline of the reflector as it is moved around 
along the string.   The trace of the pencil is called the anticaustic11.   When applied 
to the sphere it implies that the sum of the optical path lengths is a constant. 

AB + BC + CF = OV + FV = 3/2 (20) 

where the overhead bar or arc indicate the scalar magnitudes of the corresponding 
chord or arc length. 

14 



Figure 9.   Optical Path-Length and the Anticaustic 

3.3   Transformation of Variables 

Because of the physical meaning, it its very useful to express formulas in terms of 
h, and also s, the arc length along the caustic. Because it is the angular co-ordi- 
nate of the field point, 8 will also be introduced into tome formulas in place of a. 

3.3.1   h as a Variable 

The importance of h, the distance of the incident ray from the central ray, WJIS 
mentioned earlier.   In addition, certain formulas, as well as their expansion in 
series, are simplified by use of the substitution 

h   = sin a 

For example, the radius of curvature p of the caustic is given by 

o ds      3 . 
2P = da = 2 h 

(21) 
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Then xj and zc, coordinates of a point C on the caustic given in Equations (12a) and 
(12b), transform to 

2zc =  (l-h2j      (l + 2h2) 
1/2 

(22a) 

x    = h3 (22b) 

An accurate plot of part of the caustic curve is given in Figure 10. On squaring 
and adding the coordinates we obtain a simple equation for re. the radius vector 
from the center. 

4 r2 =  1 + 3 h2 (23) c 

This is a hyperbola in rc and h, with re ^ 1/2. 

The equation of the circular arc which is the intersection of the spherical reflector 
and the x-z plane is x2 + z2 = i.   (Recall R = 1.0.)  All incident rays are parallel 
to the z-axis.   So the incident ray, passing through A at height h has the equation 

x = h 

The intersection of the incident ray and the reflector, B, occurs at 

x = h;      z = -(l- li ) 

As before, AOFiB is isosceles (see Figure 2). 

Therefore FiB = FiO, and from Equations (1) and (21) 

FlB = T^W*" no 
2(1-h2) 

Hence the coordinates of the intercept are 

-1 

2\1/2 

Note that in the limit as h - 0, i.e., for the paraxial rays,. 

Fj -► F = F (0, - 1/2) 

h -» 0 

a familiar formula. 
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Sometimes it is useful to express some of these formulas in unnormalized lorm. 
It is immediately evident that 

h = R sin a = R sin 6 (21a) 

1/2 
=   (R2-h2) 

OFl =  BFl = 2^=2^T^(R2-h2) 

AB = R cos a = R cos 6 

. -1/2 

Let us consider an arbitrary point. P, lying on the reflected ray. 

PTP(xp, Zp) s P(rpf 6p) and of course, there are constraints on these coordinates. 
We know the points B and Fj on this line, so we may write 

.rfiL 

z    +(R2.h2)1/2 2(R2-h2)l/2
+   (R2.h2)l/2 

JB ___1J ^  
p 

or in terms of spherical coordinates 

x    =    ainB    -   (-2 z   cos 6 + R) 
P      cos 28 P 

and the distance} BP is given by 

BP = 

i.e., 

2        2        2 11/2 
x    + z    + R   - 2 R (x   sin 6 + z^ cos 6) 

P        p P P J 

r <>       2 -1/2 

BP =   [R" + r^ - 2 R r   cos (0 - 6 )J 

It may be noted that [AB + BP] is the path length along the ray from a reference 
line (perpendicular) through 0, which will be used in the stationary phase deriva- 
tions of a later report. 

3.3.2   Coordinates of Caustic in Terms of s 

As a consequence of Equation (20) the phase of any point C relative to F can be ob- 
tained by a linear scale for optical path length alf ng the arc FC,   In order to con- 
struct such a scale and to prepare an accurate template of the caustic, we decided 
to derive the x and z coordinates in terms of s. 
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From Equation (16) one may obtain 

o\ 1/2 
i1-*;   -1- 38 

On squaring and transposing. 

-2-l-(f)2 

On substituting these values into Equation (12a) 

^c= I1-2!) ^IM)' 

(2^1) 

(25) 

Note that at the cusp F, s = 0 and zc = 1/2.  When s = 3/2 the first factor is zero, 
making zc zero.   By symmetry, zc is equal to -1/2 when s = 3. 

One can expand Equation (25) 

2z    = 1 c KD-Mf) -Htf 
and then differentiate 

dz 
df = +l-8f+8 ©' (26) 

This equals unity when s = 0 or 3 but equals -1 when s = 3/2.   At each of the three 
points the caustic is parallel to the axis.   The derivative Equation (26) is zero when 
a = 450. 

The value of xc is given by raising Equation (24) to the 3/2 power 

3 /s\3/2       /        s\3/2 Xc = h =8(f)    • I1-!) 
One notes the natural occurrence of the variable s/3. 

Differentiation gives 

ds =  4 3 

1/2 

('-!)    • I1-2!) 
Finally, 

A 
-^ = -§(-!) 

(27) 

(28) 

(29) 
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and 

ds' "2   "  3 r     . vT 1/2 ' 

In terms of polar coordinates from Equation (23) 

(30) 

and now 9c = sin-1 (XC/TC) 

1/2 

Therefore 0c = sin 

or in terms of s 

-1   ["2 h3  (l + 3 hZ)"1/2] 

r    = — c       2 1 + 

8    = sin'1 16 c 1 + 12 K1-!) 
1/2 

(31) 

(32) 

These functions and their derivatives are shown as functions of s in Figures 11 and 
12.   Values of re and 6c are plotted for small s in Figure 13.   Note that for s < 0.15, 
Zc — re and Xc/rc — 6c •   The value of knowing these functions in terms of s arises 
from the fact that it is demonstrable that {Aase along the caustic is a linear function 
of s. 

We decided to calculate tables for xc and zc for equal increments of s/3 = 0.001. 
These were used to construct a template for a caustic for a circle of radius 100 
inches, so that As was 0.3 inch.   If the division marks represented wavelengths, 
then there would be 333 1/3 wavelengths in a radius.   This was used for the con- 
struction of wavefronts as an aid in the analysis of the problem from the wavefront 
point of view, in Section 4. 

3,4    Circle of Least Confusion 

In Figure 14, we have drawn a spherical reflector with three rays incident on it. 
These are the central ray or axial ray, and the edge rays or marginal rays.   For 
our piurposes the marginal ray is the outermost ray that is properly reflected.   It 
is characterized by the maximum allowable value of h, hmax and the maximum 
angle of incidence a, atmax-   The axial caustic, the caustic surface and the paraxial 
focus are all indicated and have been previously discussed.   Now every ray is tan- 
gent to the caustic surface.  In particular the marginal rays are tangent at the points 
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EDGE RAY OR MARGINAL RAY 

h MAX 

CENTRAL RAY OR AXIS 
CENTER 

MARGINAL RAY 

SPHERICAL 
REFLECTOR 

CAUSTIC SURFACE 

Figure 14.   Focal Region of a Sphere 

Mi.   MiMi is termed the marginal focus.   The marginal rays Intersect on the axis 
at Fi and then intersect the caustic surface a second time at the points Ci.   It fol- 
lows that a circle of diameter CiCi is the smallest circle that contains all the rays. 
It is termed "the circle of least confusion".   For our purposes the region lying be- 
tween the caustic surfaces and between the paraxial focus and the marginal focus is 
the focal region, and it is here that we ultimately must concentrate our efforts. 

Considering questions of aperture blocking, etc., it would seem reasonable to in- 
vestigate the region near the circle of least confusion as a potential position for the 
feed system feeding a spherical reflector.   This region is shown enlarged in Figure 
15.   Since the dimension CiCi is difficult to derive, we will first obtain the diam- 
eter of the circle C C which is the same distance ri from the center 0 as is the 
axial intercept Fi.   This radius is OFi, Equations (1) and (21).   On squaring OFi 

1 -h' 

This can now be compare d with Equation (23) 

4^ =  l + 3h2 

24 



u 

V) 

z 
O o 
I- 

< 

o 
UJ 
-I o 
cr 

o 
CO 

o 
U 
to 

o 
*—< 
o 
ll 

u 
I 
ö 
o 
hC 
o 
K 
y 

« u 

o 

.1 

25 



where hj corresponds to C.  On equating these two and subtracting unity from each 
side, one obtains 

3h,2 = -^-5 = tan2« = t2 

so that 

h1  = t/VT (33) 

Note that t is an abbreviation for tan a. 

We now substitute Equation (33) in Equation (22b) and obtain 

x    = h3 =  -Lr i3 (34) 
1 1 ^27 

Example:   If a = 30°. t = l/^Tand xi = 1/27 

From Equation (34) a log-log plot of xi versus t = tan a will be a straight line with 
a slope of 3.   This is shown in Figure 16 where the diameter 2xi of the correspond- 
ing circle is plotted.   The diameter of the circle of least confusion WDS determined 
graphically (see Figure 17). 

The true circle of least confusion has a somewhat smaller radius X2.   Earlier at- 
tempts to approximate it by use of a Taylor's series expansion about the point C 
failed because such series blow up at the cusp, and the point Ci was too close to 
the cusp. 

A second attempt was made by linear interpolation from the point C discussed above. 

Let the crdinates at C and Ci be xi and X2 as shown in Figure 15 and let m and mi 
be the slopes of the rays passing through Ci and C. From Figure 15 we derive the 
relationships 

X2 = m Ax 

xj  =  (m + ini)Ax (approximately) 

hence 

Now 

m x2 - yi (m + nrij 

m = tan 2 a =   —=^ 
i-t2 
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For mj we use the form 

1/2 

m,   = tan 2a,   = 
sin 20^      2 h1 f 1 - h 2) 

1 1      cos2al l^hf 

On substituting from Equation (33) into the above equation, 

2t      '       '■* m,   = 1 >r^ i-i 
Dividing results in 

2t2 

m    " yfl fJ7)    \'3) 
This slowly varying function can be approximated by the binomial theorem 

m ,      /       ^    .      „    „ v    .      .2 

m ̂
^(x-^^f^...)^-!2....) 

From this 

x2           m i 
x         m + m1 lit2        ^ i + -^ (i-\ + ... 

When t is small, then 

X2 .     VT 
xi     vT+i - 2;?3 = o-634 

ü 

(35) 

V^1)-! +... 

(36) 

This means that the diameter 2y2 of the circle of least confusion is approximately 
0.634 times that for the diameter 2xi at the axial intercept Fi,   This checks out 
against the graphical analysis.   The measured values of the circle of least con- 
fusion should start out proportional to tan3 a. 
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4.0 WAVE FRONTS, ORTHOGONAL TRAJECTORIES AND 
PARALLEL CURVES12 

4.1    Definitions 

These three terms are all equivalent.   According to optics, a wave front is the 
locus of constant phase and, in an Isotropie medium, is perpendicular to the rays 
crossing it.   Mathematically, the wave front is the orthogonal trajectory of a set 
of straight lines, - the curve which crosses each of the lines at an angle of 90°. 
A bundle of straight lines having this properly is said to be orthotomic.   An 
example is a bundle of rays from a point source.   Such a bundle of rays remains 
orthotomic after any number of reflections or refractions from smooth curved 
surfaces. 

A set of equidistant marks along a ray can be used to indicate path-length in wave- 
lengths.   Then, as the ray turns so as to coincide with adjacent rays, the points 
generate a series of parallel curves.   Their common evolute is the caustic of the 
rays.   On the other hand, each of the parallel curves is an involute of the caustic. 

One method of penerating these parallel curves is by tracing the locus of a point 
on a straight edge which rolls without slipping as a tangent about the caustic.   Such 
a curve is called a roulette.1«* Note that a roulette contains a cusp whenever the 
point touches the caustic.   An equivalent method is to wrap or unwrap a string from 
the caustic.   A point on the string traces the curve which is termed an anticaustic 
or an involute of the caustic. 

4.2   Multiple Nature of Wave Fronts 

Such a set of wave fronts or parallel curves is shown in Figure 18.   They cross the 
axis at equidistant intervals and are normal to the caustic, also at equidistant 
intervals.   On reflection from the upper branch of the caustic they generate a sec- 
ond branch of parallel curves,,   Reflections from the lower branch of the caustic 
are shown also.   Thus at any point within the caustic there ip apt to be mutual 
interference between three sets of waves.   The locus of these wave fronts can be 
computed.   The equations were developed but not used as it was decided to actually 
draw the wave fronts. 

The large template Cor the caustic curve discussed under Section 3.3.2 was aug- 
mented by a Leroy lettering pen with finger grip holder attached to a flexible steel 
tape that was clamped to the caustic curve.   By holding the pen holder and tape 
taut and swinging an arc, a perfect curve was inked directly onto a mylar sheet. 
After some difficulty in getting used to the unusual gadgetr r an excellent set of 
curves was obtained (Figure 18). 
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Figure 18.  Wavefronts Constructed using Caustic Template 

4.3    Rays and Wavefronts by Transmission 

Up until now the sphere was considered as a receiver, illuminated by a distant point 
source.   It was found that as many as three reflected rays, corresponding to three 
sets of wave fronts, could pass through a point Q in the focal region.   Thus, an 
observer with one eye open at this point could see three brightly illuminated areas 
of the sphere similar to the flare spots when the sun shines on a polished auto body. 

If now the observer and the source are interchanged, so that the observer is at a 
great distance, he will see the same areas of the sphere lighted up.   These spots 
are in the direct line of sight of the images of the source which are located behind 
the mirror surface.   This is illustrated by Figure 19 showing three images of a 
wood screw placed slightly toward the cylindrical mirror from its focus (that is, 
r = 0.65).   There is extreme variation in the horizontal magnification of the three 
images. * In fact, image B is about to stretch out and merge with image C.   This is 
the same phenomenon that would be observed in the spherical mirror.   The vertical 
magnification, however, is unity because the cylinder has no curvature along its 
axis. 

Two other points are worth noting.   The radial line r is imaged as a curve of two 
branches like that of a rectangular hyperbola.   The upper left branch images the 
complete radius.   The lower right branch cannot image any value of r less than 
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Figure 19.   Images A, B, C of Screw Q in Cylindrical Reflector 

0.5; and it repeats those values of r beyond the point on the caustic to which the 
radial line is tangent. Consequently, all three images lie on this two-branched 
curve. 

The upper comers of this and the next figure show multiple reflections between 
opposite sides of the semi-cylinder, as well as distortion due to imperfection of 
the reflecting aluminum surface. 

The second point is that the three images also lie on the image of the concentric 
circle of radius r, and continue to lie on it as the field point is moved on the con- 
stant radius.   Figure 20 shows several of these concentric circles reflected in the 
cylindrical mirror.   Note that the image of the circle with r = 0.5 is quite flat on 
the center while that of the 0. 7 circle has a reverse curvature and depicts three 
images of the 7 in the foreground. 

The wave front in th( 
less ambiguous than ' 
traces the optical pt 
cylindrical mirror a 
tion are each a.   If 1 
point Q' is a point on 
at Q.   Other points or 
around the circle, w. 
the ray direction Q'P 

transmission case is a single valued function and is therefore 
receiving case.   Thus, in Figure 21 the broken line QPA 
a ray starting from the source Q and reflected from the 

in the direction PA.   The angles of incidence and refleo- 
; produced backward to Q' such that Q'P = QP, then the 
articular reflected wavefront with the same phase as 
wave front are obtained by allowing the point P to move 
on Q' traces the corresponding wave front.   Naturally, 
pendicular to the wave front at Q'. 
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Figure 20.   Reflections of Concentric Circles in Cylinder 

There is an analogy between this wave front and the kinematics of gears.   Con- 
sider two geart or discs of the same diameter in contact at point V and with centers 
O and O'.   Let Q and Q' be points on the line of centers and equidistant from the 
point of contact V.   Then as the gear with center O' rolls around the other, the 
point Qf moves to trace out the wave front of Figure 21,   If Q were on the rim of 
the circle then Q' would trace out our old friend the epicycle (with equal sized 
gears, the particular one-cusp epicycle is a cardioidK   However, with Q an 
interior point, the curve traced by Q' is a trochoid. ^  For equal sized gears 
this is the Lf.macon of Pascal discussed by Roberval in 1650.15 

The wave fronts for r = 0. 7 and 0.3 of Figure 21 are redrav/n in Figure 22 with 
parallel tangents.   The 0.7 curve has three tangent points at A, B, and C.   When 
observed in a direction normal to these tangents the first Fresnel zone around 
each tangent point causes a flare spot.   If the normal were perpendicular to the 
tangent at the point of inflection between points E and C, then we would have a 
double point.   This occurs when the field point is on the caustic.   The wave front 
for r = 0,3 shows but one tangent at D.   This is characteristic of all field points 
for r < 0.5. 
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Figure 21.   Reflected Wavefronts on Transmission from Sphere 

Figure 22. Three Parallel Tangents to Wavefront 
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5.0    PATH-LENGTH 

In previous sections, optical rays and ray-tracing have been treated at some length. 
Of the properties of rays of interest in this study, perhaps the decisive one is op- 
tical path-length,   ft is the link between ray optics and wave theory.   While it is 
derivable from geometric optics considerations alone, path-length enters into the 
expressions of wave theory as phase, and thus into the evaluation of that theory. 
Finally, stationary phase conditions may be explained partly in terms of geometric 
optics paths,   ft is for this reason that optical path-length is singled out for care- 
ful study and treatment. 

5.1    Formulas for Path-length and Angles 

The derivation of these formulas follows closely that of an unpublished memo by 
R. C. Spencer. 

Figure 23 shows portions of concentric spherical surfaces of radii R and rp.   A ray 
AB parallel to the axis OV is reflected at B on the spherical reflector and is in- 
cident at P on the second surface.   We have shown this as a feed surface, which 
it would be for a front-fed spherical reflector, but it could be a secondary reflector, 
as in a folded system. 

SPHERICAL 
REFLECTOR 

Figure 23.   Reflection from Two Concentric Spheres 
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At B the law of geodesies41, h = R sin a, is obeyed, as it would be at P(h = rpsin On), 
where a is the angle between ray direction and the normal, and h is the distance of 
closest approach of the ray to the center of curvature, 0. 

(For a family of concentric surfaces we would have 

h = r, sin a   = r2 sin A   = r3 sin a   = ...) 

Since OV is parallel to AB, then 

e=a, 

and 

^VF1B = 2a. 

From triangle F-PO, 

v^i-v28^!)-**1^) (37a) 

(For a family of N concentric surfaces, 

6   = 2a, - 2af n 2.20f3-... + H)n+1*n 

„      -lh       _   . -Ih    . ,. ..n+1 . -1/ h 
= 2 sin   —  -2 sin    —-+... + (-1)      sin    ( — r, r. y   ' \ r 

1 ^ \   n 

The optical path-length from the reference line OA to B is AB.   Then 

?       9 1 /2 
Lj = AB = ^ = RcosOt = (R -h ) ' (38a) 

The optical path-length L from A to P is AB + BP. 

But 

L = AB + BP = AB + BA" - PA" = 2AB - PA" 

smce 

BA" = AB. 

*At any point along a geodesic in an axially symmetric system the following law 
holds ^rsintt = h, a constant, where jx is the relative index of refraction, a the 
angle the lay makes with the meridian through the point and r is the shortest distance 
from the point to the axis.   The law is equally useful for geodesies over surfaces of 
revolution anf for optical systems.   For reflectors, M = 1. 
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If we denote PA" as I , 

,   = (r2 . ,,2)1/2 

and 

L = 2 1.-1 (39) 1      p 

(For a family of concentric surfaces, if L is the path-length to a point on the nth 
surface. 

where 

h = 2l1-2l2 + 2l3- + ...+(-l)n+1tn 

I   = (r2-h2)1/2 (38b) n     x n        ' K     ' 

The usefulness of knowing the path-length to and the angular coordinate of a point 
on a surface, given the radius to that point and the height of the incoming ray, is 
immediately evident.   However, on the graphs of L and 0 plotted against h, the 
caustic surface occurs for stationary values, i.e. 

dh     u' dh    u 

Hence it is also useful to know these derivatives as well. 

Noting that 

. -1 h    h,   1   h3 a   1.3   h5   . 
a = sin   — =—+ R + £ + ••• 

r    r    2*3^    2,4'5r 

then 

v>H)^(?-.7)-- 
Expanding the equation for L, one gets 

-(—p)-*(|-t)-<■(?-1)"'" 
and on differentiating, one finds 

dL       i,de 

dT - -h diT (41> 

39 



whence 

dL       . 
de" -'h 

(This remarkably simple equation can also be derivec7 from a differential triangle.) 

Now 

L-2VV2,K2-hV/2-(rp
2-hV/2 

Hence 

and 

f -ft - ^ 

f-^-f («, 
Computationally, it proves use:ul to normalize all lengths with respect to R.   Thus 
the computations done for the single reflector feed surface case were made using 
the formulas 

L = 2^ - I (39) 

6   = 2 sin"1 h - sin"1 — (37b) 
rP 

1       P 

where 

l1 = a- h2)1/2 (38c) 

lp = (rp
2 - h2)1/2 (38d) 

Taking the results of these computations, we have graphed L, 6, dL/dh and d8/dh 
as functions of h.   Let us examine the plot of L against h (Figure 24).   It is imme- 
diately evident that L is an even function of h i.e., has even symmetry about h = 0. 
(One can represent the half-plane </> - ff by negative values of h.)  Thus ray path- 
lengths are the same in each half plane, and there may be as many as four rays of 
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Figure 24.   Path-Length versus h 
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the same jath-length.   Note that the sloi-e of the L vn. h curves is always zero at 
h = 0, the axial caustic, but has other stationary values only for rn > 0.50.   This 
is because the caustic surface does not exist for r» < 0.50.   The locus of the caustic 
is noted en the graph.   The other point worth noting is the increasing ranr:e of 
varistion of L within the caustic surface as rp increases.   This greater variation 
of pa*h-length implies wider ranges of phase.   The curves of dL/dh vs. h (Figure 
25) are noteworthy, principally in that the zeroes lie on the caustic surface and the 
manner in which the curves "take off" after crossing t >e zero line, indicating a 
rapidly increasing increase in path-length outside the caustic.   These curves have 
odd symmetry about h = 0. 

One of the more interesting graphs is the set of curves ot ö vs h (Figure 26).   Now 
these curves have odd symmetry, and what this means is that if we choose a value 
of rp, and 9p, i.e. a fixed point, there are three values of h, i.e., three rays 
which pass through some field points (r^, 6p).   This verifies our earlier observa- 
tion, and provides an easy way of locating the three incident rays.   As with the 
curves of L vs h, the stationary points are the lo:;us of the caustic surface on the 
graph.   Note that there are no statior iry values for rp < 0.50.   The curves of 
d6/dh vs h are shown in Figure 27.   -vs expected, they show even symmetry.   Again, 
the zeroes of dö/dh lie on the caustic surface.   As a check one may note that 
h dB/dh = -dL/dh. 

From the computed data, curves for L vs 6p were plotted (Figure 28).   Almost all 
the properties seen in the other curves arelto be found in these "fish tails".   For 
example, the cusps, or points on the tails of the "fish tail", mark the locus of the 
caustic surface.   A line of constant 6   has up to three intersections with any plotted 
curve for constant rp, denoting the tttree rays through a field point previously dis- 
cussed.   A line of constant L has as many as four intersections with plotted curves. 
The shrinking of the tail of the "fish tail" as rp decreases, is, of course due to the 
shape of the caustic surface, tapering to a cusp at the paraxial focus. 

If one considers a particular feed surface (curve for constant rp), it is interesting 
to trace the change in path-length as 6p is varied.   There are three branches to 
the "fish tail"; the semi-circular sector between the cusps and the two long arms. 
One can identify the associated rays.   Let us use rp = 0.6 as an example.   For Ö 
outside the cusps, say Op = 10° there is a point on one arm only.   This must be 
due to the ray that exists outside the caustic, i.e., the ray from the "other" half 
plane (that not containing the field point).   As 6p approaches the axis (6p = 0), the 
two "arms" intersect, on the axis.   This can occur only for rays at equal height. 
So the other "arm" must represent the outermost ray on the same side of the axis 
as the field point.   The remaining segment, the semi-circular sector is the locus 
of the "in^r" ray.   Note that the two rays on the same side approach one another 
in path-iength before vanishing on the caustic surface as the field point approaches 
the caustic.   It is interesting that the "inne1*" ray undergoes comparatively little 
change in path-length over the focal region, while the other two rays change con- 
siderably, and in opposite directions. 

One should not be deceived by the small changes in path-length normalized with 
respect to the radius of curvature of the spherical reflector.   Typical reflectors 
may have radii of curvature of 150 to 300 wavelengths, 30 that a change of 0.01 
on the graphs may be 1.5 to 3 wavelengths, or 500° to 1000° of phase.   If one 
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dh 

Figure 25.   Derivative of Path-Length versus h 
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Figure 26.   9 versus h 
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dh 

Figure 27.   Derivatives of ö versus h 
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considers 90° of phase change to be quite important, this means that changes in the 
fourth significant figure of normalized path-length are worthy of note.   This means 
that the optical path-length of even the slowly varying "inner" ray changes very 
significantly in the regions of interest, while the other rays are much worse. 

Figure 19 shows a particularly apt demonstration of the existence of three regions 
of stationary phase.   It is the inverse of our case, as the small screw imaged three 
times in the cylindrical mirror is in the focal region, and is viewed from a distance. 

5.2    Path-Length and Stationary Phase 

The relationship between path-length in geometric optics and the method of sta- 
tionary phase should be emphasized.   It is planned to use this method in evaluating 
certain integrals that have arisen in viewing this problem from electromagnetic 
wave diffraction.   Path-length and electromagnetic phase are equivalent.   Specular 
reflection results from stationary phase taken to the limit of short wavelengths. 
While the method of stationary phase is often considered to have limitations math- 
ematically speaking, it is very strong physically because it is founded on physical 
and geometric optics.   The conditions on our variables in stationary phase turn out 
to be conditiony on path-length and path-length derivatives.   We impose the condi- 
tions dL/d$ = 0, dL/d6 = 0.   And these give ri^e to the relationships, 

and 

*-h-{i 

sin9    sin (e ± V 
(44) 

The meaning of these two relationships is readily arrived at from our earlier work. 
The first was implied in Section 2, where it was shown that all rays remain in 
their plane of incidence.   The second is simply the sign law for triangle OPB of 
Figure 23.   This ultimately is our justification for the approach to the problem 
through geometric optics.   It has a bearing on the answers we are obtaining in our 
further study. 

This further study emphasizes the aforementioned approach to the problem through 
stationary phase and experimental measurements.   In the former, it is intended to 
evaluate the field of points in the focal region.   This evaluation will take account 
both of polarization and of the multiplicity of contributions.   The experimental effort 
will be mainly directed towards a corrected transverse feed with some scanning 
possibilities.   There will be a limited amount of work directed at verification of the 
theoretical study. 
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